Optimal natural dualities for varieties of Heyting algebras

نویسندگان

  • Brian A. Davey
  • Hilary A. Priestley
چکیده

The techniques of natural duality theory are applied to certain finitely generated varieties of Heyting algebras to obtain optimal dualities for these varieties, and thereby to address algebraic questions about them. In particular, a complete characterisation is given of the endodualisable finite subdirectly irreducible Heyting algebras. The procedures involved rely heavily on Priestley duality for Heyting algebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functor category dualities for varieties of Heyting algebras

Let A be a 4nitely generated variety of Heyting algebras and let SI(A) be the class of subdirectly irreducible algebras in A. We prove that A is dually equivalent to a category of functors from SI(A) into the category of Boolean spaces. The main tool is the theory of multisorted natural dualities. c © 2002 Elsevier Science B.V. All rights reserved. MSC: Primary: 06D20; 06D50; secondary: 08C05; ...

متن کامل

Martin Frontal operators in weak Heyting algebras

In this paper we shall introduce the variety FWHA of frontal weak Heyting algebras as a generalization of the frontal Heyting algebras introduced by Leo Esakia in [10]. A frontal operator in a weak Heyting algebra A is an expansive operator τ preserving finite meets which also satisfies the equation τ(a) ≤ b ∨ (b → a), for all a, b ∈ A. These operators were studied from an algebraic, logical an...

متن کامل

Dualities and Dual Pairs in Heyting Algebras

We extract the abstract core of finite homomorphism dualities using the techniques of Heyting algebras and (combinatorial) categories.

متن کامل

Natural Dualities Through Product Representations: Bilattices and Beyond

This paper focuses on natural dualities for varieties of bilatticebased algebras. Such varieties have been widely studied as semantic models in situations where information is incomplete or inconsistent. The most popular tool for studying bilattices-based algebras is product representation. The authors recently set up a widely applicable algebraic framework which enabled product representations...

متن کامل

Dually quasi-De Morgan Stone semi-Heyting algebras II. Regularity

This paper is the second of a two part series. In this Part, we prove, using the description of simples obtained in Part I, that the variety $mathbf{RDQDStSH_1}$ of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{RDQDStSH_1}$-chains and the variety of dually quasi-De Morgan Boolean semi-Heyting algebras--...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Studia Logica

دوره 56  شماره 

صفحات  -

تاریخ انتشار 1996